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the Enantioselective Hydrogenation of Alkyl Pyruvates in the Orito Reaction
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The asymmetric hydrogenation af-ketoesters on chirally 1-(1-naphthy))ethylamine and Methyl Pyruvate on Pt (111) at 110K

modified Pt catalysts, the Orito reaction, is the subject of intense
current study. The great challenge posed by the Orito reaction arises
from the fact that mutually interactive roles for the metal surface,
the a-ketoester, the modifier, the solvent, and hydrogen must be
taken into account. Proposed reaction mechanisms are based largely
on extensive data taken from catalysis runs and from models of
the modifier-substrate interaction. More recently, in situ spectro-
scopic studies have yielded information obtained under true reaction
conditions? Simultaneously, there is an effort among several groups
to use surface spectroscopies to study the chemisorption of alkyl
pyruvates and chiral modifiers. Reflectance FTIR spectroscopy
(RAIRS) is a particularly useful technique for the study of issues
related to the Orito reaction, in that it is sensitive to adsorbate
orientation, to interadsorbate bonding, and to chemisorption-induced
bond activation. This Communication presents RAIRS data for
the adsorption of methyl pyruvate (MP) on both clean ahy-1-
(1-naphthyl)ethylamine (NEA)-modified Pt(111). Minder et*al.
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have shown that NEAJ) is competitive with cinchona alkaloids
as a chiral modifier in the hydrogenation of ethyl pyruvate to ethyl
lactate over Pt/Al0;. The results presented herein show the
presence of a majority enediolate statgdqn the clean surface. A
perpendicularly adsorbed trans conformation staje fopulated
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Figure 1. (a—c) RAIRS spectra fora 0.1 L (1 & 1 x 10°¢ Torr-sec)

exposure of £)-NEA on Pt(111) at 110 K, followed by consecutive
exposures to methyl pyruvate.«f) RAIRS spectra for 0.25 L£)-NEA

at close to full-monolayer coverage on the clean surface, is rendered©llowed by consecutive exposures to methyl pyruvate at 110 K.
thermally stable in the presence of coadsorbed NEA. The stabilizing
interaction is identified as hydrogen-bonding between the ester
carbonyl oftransMP and the NEA amine groupt).

1700 and 1233 crt. The former is indicative of hydrogen-bond
formation between a carbonyl group ®fand the amine group of

Exposure of clean Pt(111) at 110 K to MP leadd tdisplaying NEA. T.he band at 1700 cm may be attributed tq the resultant
bands at 1543, 1452, and 1290 dn{Supporting Informationy. blue-shift of thed(NH,) frequency and/or the red-shift of tn¢CO)
Following saturation of the enediolate state at close to full- frequency?Higher initial exposure to NEA leads (spectrum 1d) to
monolayer coverage, additional exposure at 110 K yields an @ band at 1709 cnt due to NEA hydrogen-bond association.
adsorption state with a free carbonyl group characterizedfg @) Exposure to MP leads to a clearly resolved band at 1230'cm
stretching frequency of 1742 crh This minority state also displays ~ (Spectrum 1e). A comparison of spectra 1b and 1e shows that the
av(C—0Oese) band at 1307 crrt, but no out-of-plang(O—CHs) higher precoverage of NEA inhibits the formationfSpectrum
band. The latter, intense band grows in at 1150 &following 1f shows the hydrogen-bonding interaction that occurs between
the completion of the monolayer (Supporting Information). The high-coverage NEA and an overlayer of condensed MP. In
high-coverage minority state is thus assigned to igrtrans particular, the interaction leads to the complete removal of the
configuration @), with the molecular plane oriented normal to the 0(NH) band at 1640 cmt and the emergence of a stronE—N)
surface. The latter state is selectively removed on annealing to 190band at 1230 cmt. The enhancement of th§C—N) band in the
K. Annealing to 230 K (data not shown) causes the loss of the presence of multilayer MP is attributed to a change in the orientation
enediolate features, consistent with the surface polymerization of the ethylamine function due to the carboagmine hydrogen-
reaction reported by Bonello et al. for MP on clean Pt(211). bonding interaction. The similar effect observed in spectra 1c and

RAIRS spectra for the coadsorption of MP and NEA are
displayed in Figure 1. Low-coverage NEA on Pt(111) (spectrum
la) at 110 K yields a characteristi§NH,) band at 1642 cm.
Adsorption of MP on the NEA exposed surface leads to the

le, leading to the observation of a weak band~d230 cnr?,

is attributed to the formation of a 1:1 comple®, between
chemisorbed NEA and perpendicularly oriented chemisontzed

MP. Figure 2A shows that this hydrogen-bond adsorption complex

appearance (spectrum 1b) of enediolate bands at 1545 and 1290emains stable to temperatures well above thatZasn clean

cm~L. Higher exposure to MP (spectrum 1c) populatestthas
MP state, as indicated by the free carbonyl band at 1742 amd
the v(C—Oeste) Shoulder at 1307 cm. Two othertransMP-induced

Pt(111). The carbonyl band due2as present to 300 K (spectrum
2d) in the presence of NEA, whereas it is absent at 210 K (Figure
2B) on clean Pt (111). Spectrum 2e (Figure 2A) shows the

changes should be noted in spectrum 1c: there are new bands atlestruction of the 1:1 complex by 350 K.
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Figure 2. (A) RAIRS spectra, as a function of anneal temperature, for a of a H-bond interaction between a condensed overlayer of MP and

coadsorbed layer formed by exposing clean Pt(111) to 0.3 L NEA at 110 chemisorbed NEA (spectrum 1f) suggests that NEA can participate

K, followed by 0.5 L methyl pyruvate. (B) Spectra for methyl pyruvate on : ;
clean Pt(111) at 110 K and after an anneal to 210 K. in capturing MP from the solution phase.
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ester carbonyl, given that the keto carbonyl forms the stronger
chemisorption bond. Carboryamine hydrogen-bond strengths can ~ Supporting Information Available: Band assignments and RAIRS
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ments of hydrogen-bond and chemisorption bond formation lead
to a well-defined 1:1 complex, facilitated by the flexibility of the
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